Auto Added by WPeMatico

Machine Learning for Product Managers Part III — Caveats

This is a continuation of the three part series on machine learning for product managers.The first note focused on what problems are best suited for application of machine learning techniques. The second note talked about what additional skill-sets a PM needs when building machine learning products. This note will focus on what are the common mistakes made in building ML products.The goal of the note is to provide someone with limited ML understanding a…

Continue Reading

4 Ways to fail a Data scientist job interview

Photo: Pixabay/www_slon_pics‘Data Scientist’ might well be the sexiest job of the century. But hiring one is anything but that. Actually, it can be excruciatingly painful for companies. It's an equally big deal for aspirants to bag that perfect offer in core data science, one which is not just a glossed-up namesake role.While machine learning is tough, training a human who can make machines learn can be tougher. One evolves through various incremental stages of expertise…

Continue Reading

My Journey from Physics into Data Science

I still learn new knowledge everyday with my growing passion in Data Science field. To pursue different career track as a graduating physics student there must be ‘Why’ and ‘How’ questions to be answered. Having been asked by a number of people about my transition from academia — Physics to Data Science, I hope my story could answer the questions on why I decided to become a Data Scientist and how I pursued the goal, and…

Continue Reading

Ten Machine Learning Algorithms You Should Know to Become a Data Scientist

ʕっ•ᴥ•ʔっฉบับแปลไทย 10 นาทีจบ ตามมาโล้ดoriginal version is heresrc: https://towardsdatascience.com/ten-machine-learning-algorithms-you-should-know-to-become-a-data-scientist-8dc93d8ca52eมนุษย์แต่ละคนมีนิสัยมีบุคลิกที่แตกต่างกันออกไป คนที่ทำ Machine learning (ML) ก็เหมือนกัน บางคนกล่าวว่า “ฉันเชี่ยวชาญด้าน algorithm X มาก X เนี่ยเอาไป train ข้อมูลแบบไหนก็ได้” บางคนบอกว่า “ต้องเลือก tool ที่เหมาะกับคนและงานสิ” ถึงแต่ละคนจะมีมุมมองที่ต่างกัน แต่พวกเขายึดหลักกลยุทธ์ “Jack of all trades. Master of one” เหมือนกัน มันคืออะไร? มันคือการที่มีซักด้านนึงที่เรารู้ลึกรู้จริง และก็ยังรู้จัก field อื่นๆ ของ ML เอาไว้ด้วยในฐานะที่เป็น Data Scientist ฝึกหัด เราปฏิเสธไม่ได้ว่าจำเป็นต้องรู้พื้นฐาน algorithm ของ ML เอาไว้บ้าง เพื่อเอาไว้รับมือกับปัญหาที่เราอาจเจอในอนาคต และ blog นี้ก็จะมาพูดถึง algorithm เหล่านั้น + แหล่ง resource สำหรับคนที่สนใจด้วย1. Principal Component Analysis (PCA)/SVDเรียกสั้นๆ ว่า PCA ละกัน มันคือวิธีการแบบ unsupervised ที่ช่วยให้เราเข้าใจคุณสมบัติของ dataset เช่น จะวิเคราะห์หา…

Continue Reading

The 5 Stages of a System Breakdown on NJ Transit

This article is part of an ongoing collaboration between Michael Zhang and me analyzing real-time NJ Transit data that we’ve been scraping. You can find the introductory article here and the previous article here.On Friday, March 2nd, 2018, New York City was on the tail end of the first of four Nor’easters to sweep through the region in March. A wintry mix had been steadily falling from the previous night through the early afternoon, accompanied…

Continue Reading

Text mining: Twitter extraction and stepwise guide to generate a word cloud

I have seen many posts, where authors talk about generating a word cloud using tweets but not many talks about how to connect your device to Twitter in order to generate a word cloud. This is very simple but very important step to do (obviously, as we will generate a word cloud using these tweets). Before we start with the technical part, it is important to understand why we need to extract data from…

Continue Reading

Simple Beginning to Web Scraping

Photo by Jay Wennington on UnsplashWeb Scraping is almost your go-to technique whenever you need data that are not readily available in your Data Warehouse or when it’s available online but not through an API which you can use to extract the information with HTML requests.Let us say our objective is to find the popular Indian blogging platform. With that use-case in mind, Let us now see how can we find information for our analysis.Data…

Continue Reading

While I consider myself a brainstormer, you are certainly the one I’d employ to bring my visions to…

While I consider myself a brainstormer, you are certainly the one I’d employ to bring my visions to some level of quantifiable reality. You inspire me to dream big even though my own brain would likely roll around like a marble within your vast and knowledgeable cranium. I applaud your explanatory skills as they relate to the most complex of subjects for the common person and I shall continue to follow your articles with…

Continue Reading
Close Menu
Skip to toolbar